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Talk Outline

 Basics of ASR

 Water right variables

 Recoverable quantity

 Water quality issues

 Comparative cost

 What’s needed to move forward



Basics for Successful ASR

 SUITABLE AQUIFER

THIS AN ABSOLUTE MUST

The Rest Can Be Engineered

 Available water

 Compatible geochemistry

 Need or other benefit 

 Adequate infrastructure

 Regulatory framework

 Opportunity
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WATER RIGHT VARIABLES

 Water rights needed:
● Primary water right for the source water to be recharged:

o Existing (e.g., inchoate, municipal)
o New (e.g., off season, high stream flow period)

● Reservoir permit (RCW 90.03.270/WAC 173-157; includes secondary permit)

 Methods for determining the amount of water that can be 
recovered is not prescribed.

 This is appropriate given the range of hydrogeological settings.
 However, clarity/confidence is needed.

RECOVERABLE QUANTITY = RESIDUAL INCREASED STORAGE.



Do you get back what you put in?

 Recoverable quantity is a technical criteria based on water balance.

 Conceptual and computer simulation models are useful.

 Calibrated to pumping tests and long-term regional water level data.

Sometimes

 Water that seeps out/leaks away is not recoverable.

 Recoverable quantity usually decreases with time in storage.

 Water can remain in storage for years.

Recoverable Quantity



Recoverable Quantity - Examples

 Well-contained areas = high recoverable quantity:
● Mined groundwater areas (low recharge in; storage created)
● Geologic structural controls (e.g., basins, block-faulted basalt)

 Walla Walla, TVWD (basalt):  >90% (@1 yr; modeled, validated)

 Yakima (Sandstone):  95% (@1 yr) 

60% (@10 yrs; modeled)

 Walla Walla (sand & gravel):  33% (@1 year; seepage augments streamflow)

 Oregon routinely permits 95% recovery without involved 
analysis – and allows carry-over of credits from year to year.



Recovery Efficiency 
≠ Recoverable Quantity

 Recovery efficiency is based on usable water quality.
 E.g., when storing fresh water in brackish systems.

Recoverable quantity

Recovery efficiency

Water Quantity

Water Quality

% of Recharged Water Recovered
W

at
er

 Q
ua

lit
y

Usable Water 
Quality Criteria

0   .25   .5   .75   1

Recovered 
Water Quality

75% 
Recovery 
Efficiency

Water Rights:

Water Use/Purpose:

=

=



Total Storage after 10 years (YBIP)
(deep Ellensburg Fm. Ahtanum Valley)

Water  level rise (feet) after 10 yrs of seasonal injection and no recovery.

50,000 af recharged – 30,000 af remains in storage = 20,000 af leaks to stream
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Recharge Wells



Points of Recovery

Aquifer Storage, TRANSFER and Recovery (ASTR)
 Recharge in one part of the basin
 Recovery in other parts of the basin – a water balance basis
 Recovery of same molecule not required – and may not be preferred, e.g.:

 Stormwater
 Reclaimed water
 “Indirect Potable Reuse”
 Used in California, Australia

ASR:  Recharge and 
recovery in same well

ASTR:  Recharge and 
recovery in different wells



Technical Issues
● Production is constant – Demand is typically variable
● Groundwater recharge provides complementary balance
● Requires nitrogen removal

Reclaimed Water Recharge 

Regulatory Issues
● Guidelines exist
● Draft rule in preparation (WAC 173-219)

● Refers to WAC 173-200 criteria
● Local rules may also apply (e.g., county)

Water Right Issues
● Must respect streamflow reliance on existing 

discharges
● Can mitigate impacts from new withdrawals
● New water right if it is water balance neutral



Water System Operations

Storage needed for fire flow,
backup, emergency.

Conventional storage:
 ~$2M, 2 MG, ½ day supply*

ASR (per well):
 ~$2M, indefinite supply*

Allow new wells for system  
reliability/balance.

*@3,000 gpm

2 MG

>>>2  MG



CLOGGING

 In-well sediment clogging – Sometimes 
easily reversed by back flushing of well.

 Biofouling – control with disinfection.

• Source Water 
Suspended Sediments –
Control with source water 
filtration.

• System scale – Control 
with system flushing.

System Scale

System Flushing



Major Water Quality Considerations

1. Operational (clogging):
● Biofouling – prevent with residual chlorine.
● Suspended sediment – prevent by system flushing O&M.
● Air entrainment – prevent with full pipe flow

2. Regulatory
● Anti-degradation of Groundwater (WAC 173-200; e.g., disinfection products)
● Drinking Water (e.g., release of heavy metals from sulfide mineral oxidation)

Tigard, OR Recharge



Anti-Degradation of Groundwater
(WAC 173-200)

 Chlorination DBPs are a concern (e.g., TTHMs) 

 Trichloromethane regulatory limits: 
● Federal SDWA:  80 ppb (as TTHM)

● Oregon ASR:  40 ppb (as TTHM; 50% of SDWA)

● WAC 173-200:  7 ppb (as Trichloromethane)

 15-50 ppb Trichloromethane is typical in chlorinated drinking water

 AKART analysis – Treatment is expensive, and may add costs for 
biofouling control.

 OCPI is used to allow variances – requires 5 year reviews.
DBPs = Disinfection byproducts
TTHM = total trihalomethanes
RO = Reverse osmosis
AKART = All Known Available and Reasonable Technologies
OCPI = Overriding Consideration in the Public Interest
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Reactions in the Aquifer

 Oxygenated recharge water
+ reduced aquifer minerals

= Oxidation of sulfide minerals?

 Potential release of trace elements (e.g., As)

 Has happened in other areas (e.g., FL [Arsenic], WI 
[Cobalt])

 Has not happened yet in the PNW.



Walla Walla – Setting

 1900s: Groundwater levels dropped (agriculture).

 1940s: Population growth strains Mill Creek water supply.
 1940s-1960s: City drills wells.
 1950s: USGS tried ASR – fails (clogging & cascading water).

 1999: City starts ASR program (for peaking, backup, emergency).
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Walla Walla – ASR Program

 Recharge water is not filtered (control turbidity, recharge at high rates)

 Recovery when Mill Creek has:

 Groundwater levels have been restored.
 2005: ASR application submitted (>90% recovery modeled).

 Part of city’s sustainable water program.

• High turbidity
• Low streamflow
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 Conventional water costs:
● Water right:  $1,000-$10,000/afy (water market)
● Seasonal storage:  $6,000/af (Wymer)
● Infrastructure storage:  $2M (2 MGD)

 ASR costs:  
● Water right:  $0.5M? (water right processing)
● Seasonal storage:  Zero (using Mother Nature’s aquifer)
● Infrastructure storage:  $2M (per 4 MGD well)

Cost Comparisons



ASR
 Can increase reliability of supply at a competitive cost.
 Is responsible water resource management with environmental 

benefits.

Recoverable Quantity
 Is a technical water balance question to be answered with 

modeling and water level data.
 Some loss should be expected. 
 Real credit should not be arbitrarily lost after one year.

Water Quality
 Should not be used to determine recoverable quantity.
 A process for variance from WAC 173-200 should be maintained 

(OCPI or Legislative fix).

IN CONCLUSION

Thank you!


